Near-native structure refinement using in vacuo energy minimization.
نویسندگان
چکیده
One of the greatest shortcomings of macromolecular energy minimization and molecular dynamics techniques is that they generally do not preserve the native structure of proteins as observed by x-ray crystallography. This deformation of the native structure means that these methods are not generally used to refine structures produced by homology-modeling techniques. Here, we use a database of 75 proteins to test the ability of a variety of popular molecular mechanics force fields to maintain the native structure. Minimization from the native structure is a weak test of potential energy functions: It is complemented by a much stronger test in which the same methods are compared for their ability to attract a near-native decoy protein structure toward the native structure. We use a powerfully convergent energy-minimization method and show that, of the traditional molecular mechanics potentials tested, only one showed a modest net improvement over a large data set of structurally diverse proteins. A smooth, differentiable knowledge-based pairwise atomic potential performs better on this test than traditional potential functions. This work is expected to have important implications for protein structure refinement, homology modeling, and structure prediction.
منابع مشابه
Solvent dramatically affects protein structure refinement.
One of the most challenging problems in protein structure prediction is improvement of homology models (structures within 1-3 A C(alpha) rmsd of the native structure), also known as the protein structure refinement problem. It has been shown that improvement could be achieved using in vacuo energy minimization with molecular mechanics and statistically derived continuously differentiable hybrid...
متن کاملEvaluation of atomic level mean force potentials via inverse folding and inverse refinement of protein structures: atomic burial position and pairwise non-bonded interactions.
Two atomic level knowledge-based mean force interaction potentials (KBPs), a centrosymmetric burial position term and a long-range pairwise term, were developed. These were tested by comparing multiple configurations of three structurally unrelated proteins and were found successfully to (i) discriminate native state proteins from grossly misfolded structures in inverse folding tests, (ii) rank...
متن کاملRefining near-native protein-protein docking decoys by local resampling and energy minimization.
How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement vi...
متن کاملA simple reference state makes a significant improvement in near-native selections from structurally refined docking decoys
Near-native selections from docking decoys have proved challenging especially when unbound proteins are used in the molecular docking. One reason is that significant atomic clashes in docking decoys lead to poor predictions of binding affinities of near native decoys. Atomic clashes can be removed by structural refinement through energy minimization. Such an energy minimization, however, will l...
متن کامل3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization.
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low-resol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 9 شماره
صفحات -
تاریخ انتشار 2007